A Mosaic in Cygnus

I accidentally stumbled on how to make mosaics while trying to combine some data in Astro Pixel Processor. I had been taking images in Cygnus around the star Sadr and was trying to pull out some more detail when I realized that what I had done was make a mosaic! Since I had done it with two images, I decided to take some more panels and see what I could come up with:

Since I hadn’t planned to do it from the start, my panel structure was off so I had to take one more panel then I would have needed to if I had planned it out ahead of time.

Total integration time is 21 hours and 20 minutes. This makes it my image with the longest integration time. Integration for each panel:

Propeller Nebula – 48 x 300s
Crescent & Tulip Nebulae – 48 x 300s
Region near Farawis – 48 x 300s
Tulip Nebula – 39 x 300s
Sadr & Crescent Nebula – 73 x 300s (two sessions, one from June of last year and one from June of this year.

I used Stellarium to help figure out my framing and center point for capturing the panels. I captured each panel on a different night and stacked them in DeepSkyStacker. Mosaic was combined using Astro Pixel Processor and I saved the combination as an unstretched linear image. I processed the linear image using Photoshop. Processing consisted of color balance, stretching by levels and curves, noise removal using NoiseXterminator and various Astrophotography Tools Actions. Since I shot from Bortle 8, I had some weird gradients (my neighbor also had their backyard light on for two of the nights). Also, since I hadn’t planned to do a mosaic from the start, my framing was very inefficient. For my next mosaic, I will actually plan it better and probably use Teloscopius to figure out my framing. I tried several different processing techniques, first using a stretched image from Astro Pixel Processor, as well as using Siril to stretch the individual stacks before combining them in APP. In the end, linear combination and processing was the best!

Visit the upload on Astrobin.com for full annotation and details

Equipment & Statistics

Radian Raptor 61
Canon EOS Ra
Optolong L-eNhanced Filter
Sky Watcher EQ6-R Pro
ZWO 30mm f4 MiniScope (guide)
ZWO asi224mc (guide)
.
27 x 300s (800 ISO)
Dark, flat, bias and dark flats calibration frames
Bortle 8 – Providence, RI

Back to Imaging

It has been since November, 29, 2021 since the last time I was able to image, but finally on June 17, 2022 I was able to get back out there!

During my last imaging session of last year, my laptop died and it has been nerve wracking trying to get set up again. Finally, we got a new laptop that I was confident would work and I set about getting everything hooked up and working. My first night back out I was about to get 2 hours and 15 minutes of imaging done on the Sadr Region, one of my favorite areas of the night sky to shoot! I am working on more images of this area in Cygnus and hope to post them all soon!

Visit the upload on Astrobin.com for full annotation and details

Equipment & Statistics

Radian Raptor 61
Canon EOS Ra
Optolong L-eNhanced Filter
Sky Watcher EQ6-R Pro
ZWO 30mm f4 MiniScope (guide)
ZWO asi224mc (guide)
.
27 x 300s (800 ISO)
Dark, flat, bias and dark flats calibration frames
Bortle 8 – Providence, RI

Looking at Cygnus

Milky Way season has officially begun and that means we get to start observing and photographing beautiful nebulae. One of the most popular regions that gets looked at towards the end of Spring and the start of Summer is the constellation Cygnus. Famous constellations that include The North American Nebula, The Veil, the Crescent Nebula, and more can be found in this constellation. So far, I have been able to capture the North American and Pelican Nebulae together, which is close to the bright star Deneb, as well as the Sadr Region which includes the Crescent Nebula. Deneb and Sadr make up the two brightest stars in the Swan constellation, and around both of them is a lot of beautiful nebulae and stellar dust.

Above is the Sadr and its surrounding sky which features such Nebula like the Crescent. This area is full of rich Ha and comes out beautifully. The shot above is a total of 3 hours and 50 min integration time in one session.

Here we have the North American and Pelican Nebulae which are near the star Deneb. This is one of my favorite nebula in the night sky period. Previously, I posted these images processed as a simulated SHO. This shot is a total of 3 hours and 35 minutes integration time in one session.

I shot both of these targets with a Canon EOS Ra through the Radian Raptor 61 using and Optolong L-eNhanced filter. This is the second time I have been able to use the Raptor for what I intended it for and will be will be writing something on it soon!

Clear Skies!

Blog at WordPress.com.

Up ↑